Abstract
The challenge to enhance the naturalness and efficiency of spoken language man---machine interface, emotional speech identification and its classification has been a predominant research area. The reliability and accuracy of such emotion identification greatly depends on the feature selection and extraction. In this paper, a combined feature selection technique has been proposed which uses the reduced features set artifact of vector quantizer (VQ) in a Radial Basis Function Neural Network (RBFNN) environment for classification. In the initial stage, Linear Prediction Coefficient (LPC) and time---frequency Hurst parameter (pH) are utilized to extract the relevant feature, both exhibiting complementary information from the emotional speech. Extensive simulations have been carried out using Berlin Database of Emotional Speech (EMO-DB) with various combination of feature set. The experimental results reveal 76 % accuracy for pH and 68 % for LPC using standalone feature set, whereas the combination of feature sets, (LP VQC and pH VQC) enhance the average accuracy level up to 90.55 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.