Abstract
Abstract In this contribution we propose a feature-based method for motion estimation and correction in intraoperative thermal imaging during brain surgery. The motion is estimated from co-registered white-light images in order to perform a robust motion correction on the thermographic data. To ensure real-time performance of an intraoperative application, we optimise the processing time which essentially depends on the number of key points found by our algorithm. For this purpose we evaluate the effect of applying an non-maximum suppression (NMS) to improve the feature detection efficiency. Furthermore we propose an adaptive method to determine the size of the suppression area, resulting in a trade-off between accuracy and processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.