Abstract

Although fast Hartley transform (FHT) provides efficient spectral analysis of real discrete signals, the literature that addresses the parallelization of FHT is extremely rare. FHT is a real transformation and does not necessitate any complex arithmetics. On the other hand, FHT algorithm has an irregular computational structure which makes efficient parallelization harder. In this paper, we propose an efficient restructuring for the sequential FHT algorithm which brings regularity and symmetry to the computational structure of the FHT. Then, we propose an efficient parallel FHT algorithm for medium-to-coarse grain hypercube multicomputers by introducing a dynamic mapping scheme for the restructured FHT. The proposed parallel algorithm achieves perfect load-balance, minimizes both the number and volume of concurrent communications, allows only nearest-neighbor communications and achieves in-place computation and communication. The proposed algorithm is implemented on a 32 node iPSC/2 hypercube multicomputer, high-efficiency values are obtained even for small size FHT problems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.