Abstract

High-performance compact capacitive energy storage is vital for many modern application fields, including grid power buffers, electric vehicles, and portable electronics. However, achieving exceptional volumetric performance in supercapacitors is still challenging and requires effective fabrication of electrode films with high ion-accessible surface area and fast ion diffusion capability while simultaneously maintaining high density. Herein, a facile, efficient, and scalable method is developed for the fabrication of dense, porous, and disordered graphene through spark-induced disorderly opening of graphene stacks combined with mechanical compression. The obtained disordered graphene achieves a high density of 1.18gcm-3, sixfold enhanced ion conductivity compared to common laminar graphene, and an ultrahigh volumetric capacitance of 297Fcm-3 in ionic liquid electrolyte. The fabricated stack cells deliver a volumetric energy density of 94.2WhL-1 and a power density of 13.7kWL-1, representing a critical breakthrough in capacitive energy storage. Moreover, the proposed disordered graphene electrodes are assembled into ionogel-based all-solid-state pouch cells with high mechanical stability and multiple optional outputs, demonstrating great potential for flexible energy storage in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.