Abstract

Bamboo, featuring fast growth rate and high cellulose content, is considered to be one of the most attractive feedstocks for degradable bio-materials as a substitute for plastics. However, those was limited to the fields of bamboo structural materials mainly by physical processes. Herein, we report a facile continuous wet extrusion strategy for scalable manufacturing of anisotropic regenerated cellulose films in alkali/urea aqueous solution for the first time. The bamboo cellulose solution was regenerated in H2SO4/Na2SO4/ZnSO4 aqueous solution to facilitate the construction of dense fibrils networks. Moreover, under the synergistic effect of shear orientations and stretching processes in wet extrusion molding, the cellulose networks promoted further orientated assembly into aligned fibrils. Therefore, these anisotropic cellulose hydrogels exhibited good mechanical properties, and the tensile strength was increased from 1.67 MPa of anisotropic cellulose hydrogel with 1.0 of stretching ration (ACH-1.0) to 2.13 MPa of ACH-1.4 with increasing stretching ratio from 1.0 to 1.4, which was about 1.34 times higher than that of the isotropic hydrogel fabricated by tape-casting. Moreover, ACH-1.4 exhibited commendable thermal stability and air barrier properties. This work demonstrated a simple and continuous bottom-up approach for fabrication of anisotropic bamboo-based cellulose hydrogels and films with excellent mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call