Abstract

Focusing on the interesting new concept of all-metal electride, centrosymmetric molecules e–+M2+(Ni@Pb12)2–M2++e– (M = Be, Mg, and Ca) with two anionic excess electrons located at the opposite ends of the molecule are obtained theoretically. These novel molecular all-metal electrides can act as infrared (IR) nonlinear optical (NLO) switches. Whereas the external electric field (F) hardly changes the molecular structure of the all-metal electrides, it seriously deforms their excess electron orbitals and average static first hyperpolarizabilities (β0e(F)). For e–+Ca2+(Ni@Pb12)2–Ca2++e–, a small external electric field F = 8 × 10–4 au (0.04 V/A) drives a long-range excess electron transfer from one end of the molecule through the middle all-metal anion cage (Ni@Pb12)2– to the other end. This long-range electron transfer is shown by a prominent change of excess electron orbital from double lobes to single lobe, which forms an excess electron lone pair and electronic structure Ca2+(Ni@Pb12)2–Ca2++2e–. Therefor...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.