Abstract

Image processing algorithms present a necessary tool for various domains related to computer vision, such as video surveillance, medical imaging, pattern recognition, etc. However, these algorithms are hampered by their high consumption of both computing power and memory, which increase significantly when processing large sets of images. In this work, we propose a development scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous platforms (Multi-CPU/Multi-GPU), for improving performance of single and multiple image processing algorithms. The proposed scheme allows a full exploitation of hybrid platforms based on efficient scheduling strategies. It enables also overlapping data transfers by kernels executions using CUDA streaming technique within multiple GPUs. We present also parallel and heterogeneous implementations of several features extraction algorithms such as edge and corner detection. Experimentations have been conducted using a set of high resolution images, showing a global speedup ranging from 5 to 30, by comparison with CPU implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.