Abstract
Atomically detailed views of molecular recognition events are of great interest to a variety of research areas in biology and chemistry. Here, we apply the weighted ensemble path sampling approach to improve the efficiency of explicit solvent molecular dynamics (MD) simulations in sampling molecular association events between two methane molecules, Na(+) and Cl(-) ions, methane and benzene, and the K(+) ion and 18-crown-6 ether. Relative to brute force simulation, we obtain efficiency gains of at least 300 and 1100-fold for the most challenging system, K(+)/18-crown-6 ether, in terms of sampling the association rate constant k and distribution of times required to traverse transition paths, respectively. Our results indicate that weighted ensemble sampling is likely to allow for even greater efficiencies for more complex systems with higher barriers to molecular association.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.