Abstract

BackgroundAn accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first.ResultsThe authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks.ConclusionsSimulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/.

Highlights

  • An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods

  • Because our final objective is to improve the performance of the therapeutic interventions, method in [10] involves finding optimal interventions for all networks which are compatible with the prior knowledge

  • Based on the cost function in (14), for each gene g, we find the expected performance of the induced robust intervention ψIiBnRd ( i,θ i ; g) across the remaining uncertainty class i,θi, take the expectation of this average performance relative to the marginal distribution of the uncertain parameter θi, and sum all values found for the k uncertain parameters

Read more

Summary

Results

The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. One must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. We propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks

Conclusions
Background
Methods
Results and discussion
Conclusion
31. Bornholdt S
39. Klampfer L

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.