Abstract
The logit binomial logistic dose response model is commonly used in applied research to model binary outcomes as a function of the dose or concentration of a substance. This model is easily tailored to assess the relative potency of two substances. Consequently, in instances where two such dose response curves are parallel so one substance can be viewed as a dilution of the other, the degree of that dilution is captured in the relative potency model parameter. It is incumbent that experimental researchers working in fields including biomedicine, environmental science, toxicology and applied sciences choose efficient experimental designs to run their studies to both fit their dose response curves and to garner important information regarding drug or substance potency. This article provides far-reaching practical design strategies for dose response model fitting and estimation of relative potency using key illustrations. These results are subsequently extended here to handle situations where the assessment of parallelism and the proper dose-scale are also of interest. Conclusions and recommended strategies are supported by both theoretical and simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.