Abstract

Learning time is always a critical issue in Reinforcement Learning, especially when Recurrent Neural Networks are used to predict Q values in non-Markovian environments. Experience reuse has been received much attention due to its ability to reduce learning time. In this paper, we propose a new method to efficiently reuse experience. Our method generates new episodes from recorded episodes using an action-pair merger. Recorded episodes and new episodes are replayed after each learning epoch. We compare our method with standard online learning, and learning using experience replay in a vision based robot problem. The results show the potential of this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.