Abstract
CsPbI3 quantum dots (QDs) are of great interest in new-generation photovoltaics (PVs) due to their excellent optoelectronic properties. The long and insulative ligands protect their phase stability and enable superior photoluminescence quantum yield, however, limiting charge transportation and extraction in PV devices. In this work, we use a fullerene derivative with the carboxylic anchor group ([SAM]C60) as the semiconductor ligand and build the type II heterojunction system of CsPbI3 QDs and [SAM]C60 molecules. We find their combination enables obvious exciton dislocation and highly efficient photogenerated charge extraction. After the introduction of [SAM]C60, the exciton-binding energy of CsPbI3 decreases from 30 meV to 7 meV and the fluorescence emission mechanism also exhibits obvious changes. Transient absorption spectroscopy visualizes a ~5 ps electron extraction rate in this system. The findings gained here may guide the development of perovskite QD devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.