Abstract
We experiment with exact integer arithmetic to implement primitives for geometric algorithms. Naive use of exact arithmetic—either modular or multiprecision integer—increases execution time dramatically over the use of floating-point arithmetic. By combining tuned multiprecision integer arithmetic and a floating-point filter based on interval analysis, we can obtain the effect of exact integer arithmetic at a cost close to that of floating-point arithmetic. We describe an experimental expression compiler that conveniently packages our techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.