Abstract

Evolutionary game theory combines game theory and dynamical systems and is customarily adopted to describe evolutionary dynamics in multi-agent systems. In particular, it has been proven to be a successful tool to describe multi-agent learning dynamics. To the best of our knowledge, we provide in this paper the first replicator dynamics applicable to the sequence form of an extensive-form game, allowing an exponential reduction of time and space w.r.t. the currently adopted replicator dynamics for normal form. Furthermore, our replicator dynamics is realization equivalent to the standard replicator dynamics for normal form. We prove our results for both discrete-time and continuous-time cases. Finally, we extend standard tools to study the stability of a strategy profile to our replicator dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.