Abstract

Often the variables in a regression model are difficult or expensive to obtain so auxiliary variables are collected in a preliminary step of a study and the model variables are measured at later stages on only a subsample of the study participants called the validation sample. We consider a study in which at the first stage some variables, throughout called auxiliaries, are collected; at the second stage the true outcome is measured on a subsample of the first-stage sample, and at the third stage the true covariates are collected on a subset of the second-stage sample. In order to increase efficiency, the probabilities of selection into the second and third-stage samples are allowed to depend on the data observed at the previous stages. In this paper we describe a class of inverse-probability-of-selection-weighted semiparametric estimators for the parameters of the model for the conditional mean of the outcomes given the covariates. We assume that a subject's probability of being sampled at subsequent stages is bounded away from zero and depends only on the subject's data collected at the previous sampling stages. We show that the asymptotic variance of the optimal estimator in our class is equal to the semiparametric variance bound for the model. Since the optimal estimator depends on unknown population parameters it is not available for data analysis. We therefore propose an adaptive estimation procedure for locally efficient inferences. A simulation study is carried out to study the finite sample properties of the proposed estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.