Abstract
This article considers a wide class of semiparametric regression models in which interest focuses on population-level quantities that combine both the parametric and the nonparametric parts of the model. Special cases in this approach include generalized partially linear models, generalized partially linear single-index models, structural measurement error models, and many others. For estimating the parametric part of the model efficiently, profile likelihood kernel estimation methods are well established in the literature. Here our focus is on estimating general population-level quantities that combine the parametric and nonparametric parts of the model (e.g., population mean, probabilities, etc.). We place this problem in a general context, provide a general kernel-based methodology, and derive the asymptotic distributions of estimates of these population-level quantities, showing that in many cases the estimates are semiparametric efficient. For estimating the population mean with no missing data, we show that the sample mean is semiparametric efficient for canonical exponential families, but not in general. We apply the methods to a problem in nutritional epidemiology, where estimating the distribution of usual intake is of primary interest and semiparametric methods are not available. Extensions to the case of missing response data are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.