Abstract
We propose new nonparametric estimators of the integrated volatility of an It\^{o} semimartingale observed at discrete times on a fixed time interval with mesh of the observation grid shrinking to zero. The proposed estimators achieve the optimal rate and variance of estimating integrated volatility even in the presence of infinite variation jumps when the latter are stochastic integrals with respect to locally "stable" L\'{e}vy processes, that is, processes whose L\'{e}vy measure around zero behaves like that of a stable process. On a first step, we estimate locally volatility from the empirical characteristic function of the increments of the process over blocks of shrinking length and then we sum these estimates to form initial estimators of the integrated volatility. The estimators contain bias when jumps of infinite variation are present, and on a second step we estimate and remove this bias by using integrated volatility estimators formed from the empirical characteristic function of the high-frequency increments for different values of its argument. The second step debiased estimators achieve efficiency and we derive a feasible central limit theorem for them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.