Abstract

An efficient estimation procedure for conditionally linear and Gaussian state space models is developed. Efficient importance sampling together with a Rao-Blackwellization step are used to construct a highly efficient estimation method that produces continuous approximations to the likelihood function, greatly enhancing simulated maximum likelihood estimation. An application where the unobserved component stochastic volatility model is used to model inflation is proposed and parameter estimates for all G7 countries are shown to be statistically different from calibrated values used in the literature. The estimated model is used to forecast inflation of these countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.