Abstract

In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11 % and high sensitivity with a limit of quantitation of 0.27 μmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.