Abstract

The maximum likelihood estimator (MLE) for the proportional hazards model with case 1 interval censored data is studied. It is shown that the MLE for the regression parameter is asymptotically normal with $\sqrt{n}$ convergence rate and achieves the information bound, even though the MLE for the baseline cumulative hazard function only converges at $n^{1/3}$ rate. Estimation of the asymptotic variance matrix for the MLE of the regression parameter is also considered. To prove our main results, we also establish a general theorem showing that the MLE of the finite-dimensional parameter in a class of semiparametric models is asymptotically efficient even though the MLE of the infinite-dimensional parameter converges at a rate slower than $\sqrt{n}$. The results are illustrated by applying them to a data set from a tumorigenicity study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call