Abstract

Finite transducers, two-tape automata, and biautomata are related computational models descended from the concept of Finite-State Automaton. In these models an automaton controls two heads that read or write symbols on the tapes in the one-way mode. The computations of these three types of automata show many common features, and it is surprising that the methods for analyzing the behavior of automata developed for one of these models do not find suitable utilization in other models. The goal of this paper is to develop a uniform technique for building polynomial-time equivalence checking algorithms for some classes of automata (finite transducers, two-tape automata, biautomata, single-state pushdown automata) which exhibit certain features of the deterministic or unambiguous behavior. This new technique reduces the equivalence checking of automata to solvability checking of certain systems of equations over the semirings of languages or transductions. It turns out that such a checking can be performed by the variable elimination technique which relies on some combinatorial and algebraic properties of prefix-free regular languages. The main results obtained in this paper are as follows: 1. Using the algebraic approach a new algorithm for checking the equivalence of states of deterministic finite automata is constructed; time complexity of this algorithm is O ( n log n ). 2. A new class of prefix-free finite transducers is distinguished and it is shown that the developed algebraic approach provides the equivalence checking of transducers from this class in quadratic time (for real-time prefix-free transducers) and cubic (for prefix-free transducers with ɛ -transitions) relative to the sizes of analysed machines. 3. It is shown that the equivalence problem for deterministic two-tape finite automata can be reduced to the same problem for prefix-free finite transducers and solved in cubic time relative to the size of the analysed machines. 4. In the same way it is proved that the equivalence problem for deterministic finite biautomata can be solved in cubic time relative to the sizes of analysed machines. 5. By means of the developed approach an efficient equivalence checking algorithm for the class of simple grammars corresponding to deterministic single-state pushdown automata is constructed.

Highlights

  • Two-tape automata, and biautomata are related computational models descended from the concept of Finite-State Automaton

  • In these models an automaton controls two heads that read or write symbols on the tapes in the one-way mode. e computations of these three types of automata show many common features, and it is surprising that the methods for analyzing the behavior of automata developed for one of these models do not nd suitable utilization in other models. e goal of this paper is to develop a uniform technique for building polynomial-time equivalence checking algorithms for some classes of automata which exhibit certain features of the deterministic or unambiguous behavior. is new technique reduces the equivalence checking of automata to solvability checking of certain systems of equations over the semirings of languages or transductions

  • It turns out that such a checking can be performed by the variable elimination technique which relies on some combinatorial and algebraic properties of pre x-free regular languages. e main results obtained in this paper are as follows: 1. Using the algebraic approach a new algorithm for checking the equivalence of states of deterministic nite automata is constructed; time complexity of this algorithm is. 2

Read more

Summary

Основные понятия

Пустое слово обозначим символом , а множество всех слов в алфавите Σ обозначим записью Σ∗. Предположим, что слово является конкатенацией слов и , т.е. В том случае, если = мы будем называть слово частным при делении справа слова на слово Язык в алфавите Σ — это любое подмножество множества слов Σ∗. Детерминированный конечный автомат (DFA) в алфавите Σ задается системой переходов = ⟨ , 0, , ⟩, в которой — это конечное множество состояний, 0 — начальное состояние, ⊆ — подмножество допускающих состояний, и ∶ ×Σ → — частичная функция переходов. DFA описывает регулярный язык ( ), представляющий собой множество всех слов , которые допускаются автоматом. Для описания конечных семейств регулярных языков мы будем использовать детерминированные конечные автоматы с несколькими множествами допускающих состояний (multi-DFAs) в алфавите Σ. В дальнейшем по умолчанию будем подразумевать, что все DFAs и multiDFAs, которые рассматриваются в этой статье, являются сокращенными

Алгебраический метод проверки эквивалентности автоматов
Префиксные языки и их основные свойства
Рассмотрим случай
Конечные автоматы-преобразователи
Проверка эквивалентности префиксных трансдьюсеров реального времени
Проверка эквивалентности префиксных трансдьюсеров c -переходами
Проверка эквивалентности детерминированных двухленточных автоматов
Проблема эквивалентности для детерминированных биавтоматов
Findings
Проблема эквивалентности для простых грамматик

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.