Abstract

An important task in the simulation of hard spheres and other hard particles is structure prediction via equilibration. Event-driven molecular dynamics is efficient because its Newtonian dynamics equilibrates fluctuations with the speed of sound. Monte Carlo simulation is efficient if performed with correlated position updates in event chains. Here, we combine the core concepts of molecular dynamics and event chains into a new algorithm involving Newtonian event chains. Measurements of the diffusion coefficient, nucleation rate, and melting speed demonstrate that Newtonian event chains outperform other algorithms. Newtonian event chains scale well to large systems and can be extended to anisotropic hard particles without approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.