Abstract

Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes glycosyltransferases for the synthesis of the natural C-glycoside nothofagin. Adding Brij-35 detergent (1 %, w/v) during sonication of the E. coli BL21-Gold (DE3) expression strain, recovery of Oryza sativa C-glycosyltransferase was enhanced by ∼3-fold, partly due to the release of enzyme activity trapped in insoluble pellet. Freeze drying of the resulting cell-free extract (∼17 U ml−1) reduced the volume ∼20-fold and gave ∼55 mg solids ml−1 liquid processed, with 83 % retention of the original activity and a specific activity of 0.20 U mg−1 solids. The Glycine max sucrose synthase was processed analogously, giving a solid enzyme preparation of 0.28 U mg-1 in 63 % yield. Both enzyme formulations were stable for several weeks. The glycosyltransferase cascade reaction for 3′-β-C-glucosylation of phloretin (60 mM; as inclusion complex with hydroxypropyl-β-cyclodextrin) from UDP-glucose (generated in situ by sucrose synthase from 500 mM sucrose and 0.5 mM UDP) showed excellent performance metrics (≥ 98 % yield; 3.2 g l−1 h−1 space-time yield; ∼90 regeneration cycles for UDP). Collectively, our study demonstrates a facile procedure for solid glycosyltransferase formulations practically usable in glycoside synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.