Abstract

In this study, a novel preparation method of theaflavin (TF) has been established. Our findings indicated that the formation of TF was significantly enhanced by using an ice bath (2-3°C). Additionally, increasing the ratio of (-)-epigallocatechin (EGC) under the ice bath could further improve its yield. This approach prevented the appearance of a dark solution within 3h, effectively protecting TF from oxidation. Our study on the generation mechanism of TF suggested that EGC-quinone I (EGC-Q-I) with two carbanions could potentially serve as one of synthons based on the retrosynthetic analysis of the bicyclo[3.2.1]octane-type intermediate. Subsequently, quantum mechanical calculations further supported this hypothesis. Practical Application: In this study, we have developed a novel method for the synthesis of theaflavin (TF), demonstrating that the use of ice bath significantly enhanced its yield. Increasing the ratio of (-)-epigallocatechin (EGC) under the ice bath further improved TF yields and prevented darkening of the solution for at least 3h, thereby protecting TF from oxidation. Our study suggested that EGC-quinone I is a potential synthon based on the retrosynthetic analysis of the bicyclo[3.2.1]octane-type intermediate (BOI). This hypothesis is supported by QM calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call