Abstract

The usefulness of wireless sensor networks has fascinated the world’s attention. Usage of low-power microcontrollers and wireless sensors to handle real-world problems such as environmental, medicinal, and structural monitoring has exploded. Wireless sensor nodes are extremely tiny and are designed for low-duty applications such as recording physical characteristics. Wireless sensor network operations such as sensing, calculations, and communication take extensively more energy than these low-powered sensor nodes. They are used both in attainable and inaccessible areas and are usually powered by batteries. Since the sensor is powered by batteries, replacing and charging the battery after its depletion are challenging. Manual battery replacement is hampered by geographical restrictions, which results in significant reduction of wireless sensor network performance and longevity. As a result, this study addresses the energy-constrained wireless sensor networks by creating a technological model to a heterogeneous clustered wireless sensor network in an outdoor application using solar-enabled energy harvesting photovoltaic cells. Due to lack of energy, this effort was employed to overcome the challenges of relatively restricted processing performance and limited radio frequency transmission bandwidth. The program was created to efficiently utilize the energy produced from solar panels and charge the batteries in a variety of ways. The algorithm also controls the discharging process. According to the results of extensive investigation and experimentation, the sensor is continuously operated even when there is no solar light. The batteries are charged on bright day and discharged at night and on overcast days. The algorithm is used to govern the energy supplement to rechargeable lithium-ion polymer batteries as well as a load (sensor). In the worst scenario (no solar light/cloudy, and sensors reporting data every 30 minutes), the present cluster head sensor with 6 ordinary nodes in the cluster lasts just 16.6667 days. But the life duration of the newly designed model algorithm has been raised to 54.16667 days. The normal sensor node’s life duration has also been enhanced from 50 to 91.66667 days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call