Abstract

Currently, studies on the energy efficiency of manufacturing systems usually lack synthetic and systematic techniques. In this paper, a holistic framework is demonstrated in order to achieve more sustainable manufacturing, which covers machine-level, system-level and life-cycle-level energy efficiency techniques. Based on these, the mechanism of how energy consumption is affected by machining processes and system operation is analyzed to achieve a comprehensive decision on energy efficiency optimization. Four main topics are included in this paper: (1) Hierarchical sustainability goals and metrics for energy-efficient manufacturing; (2) Machine-level machining processes optimization for energy efficiency enhancement; (3) System-level innovations for efficient consumption management; (4) Life-cycle level energy flow modeling and energy recycling strategy. An automotive engine manufacturing system is taken as an example to build a concrete understanding of the application of the framework. Moreover, this holistic framework establishes the theoretical basis for promoting the energy efficiency of automotive engine manufacturing systems. Furthermore, the proposed techniques can provide decision-making support for achieving sustainable manufacturing in a wider scope of mechanical manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call