Abstract
Quantum dots (QDs) are semiconductor nanocrystals whose optical properties can be tuned by altering their size. By combining QDs with dyes we can make hybrid QD-dye systems exhibiting energy transfer (ET) between QDs and dyes, which is important in sensing and lighting applications. In conventional QDs that need a shell to passivate surface defects, ET usually proceeds through Förster resonance energy transfer (FRET) that requires significant spectral overlap between QD emission and dye absorbance, as well as large oscillator strengths of those transitions. This considerably limits the choice of dyes. In contrast, perovskite QDs do not require passivating shells for bright emission, which makes ET mechanisms beyond FRET accessible. This work explores the design of a CsPbBr3 QD-dye system to achieve efficient ET from CsPbBr3 QDs to dyes with dimethyl iminium binding groups where the close binding of dyes surface facilitates spatial wavefunction overlap. Using steady-state and time-resolved photoluminescence experiments, we demonstrate that efficient ET from CsPbBr3 to dyes with minimal spectral overlap proceeds via the Dexter exchange-type mechanism, which overcomes the conventional restriction of spectral overlap that severely limits the tunability of these systems. This approach opens new avenues for QD-molecule hybrids for a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.