Abstract

Finding the material characteristics satisfying most of the photovoltaic conditions is difficult. In contrast, utilization of foreign materials that can contribute to light harvesting and charge transfers in the devices is now desirable/thought-provoking. Herein, a binary hybrid photoanode utilizing nano-amassed micron-sized mesoporous zinc oxide hollow spheres (meso-ZnO HS) in conjunction with SnO2 nanoparticles (NPs), i.e., SnO2 NP_ZnO HS (for an optimized weight ratio (8:2)), displayed a nearly ∼4-fold increase in the efficiency (η) compared to that of bare SnO2 nanoparticle device. Enhanced device efficacy in the composite photoanode-based device can be accredited to the dual function of nano-amassed meso-ZnO HS. Nano-amassed micron-sized ZnO HS embedded in the photoanode can increase the light-harnessing capability without sacrificing the surface area as well as optical confinement of light by multiple reflections within its cavity and enhanced light-scattering effects. Electrochemical impedance spectroscopy analysis revealed an extended lifetime of electron (τe) and a higher value of Rct2 at the working electrode/dye/redox mediator interface, indicating a minimum photoinduced electron interception. The open-circuit voltage decay reveals a slower recombination kinetics of photogenerated electrons, supporting our claim that the nano-ammased meso-ZnO HS can serve as an energy barrier to the photoinjected electrons to retard the back-transfer to the electrolyte. Moreover, the improvement in the fill factors of the composite-based devices is endorsed to the facile penetration of the electrolyte through the pores of nano-amassed meso-ZnO HS, which increases the regeneration probability of oxidized dyes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.