Abstract

Statistically efficient processing schemes focus the resources of a signal processing system on the range of statistically probable signals. Relying on the statistical properties of retinal motion signals during ego-motion we propose a nonlinear processing scheme for retinal flow. It maximizes the mutual information between the visual input and its neural representation, and distributes the processing load uniformly over the neural resources. We derive predictions for the receptive fields of motion sensitive neurons in the velocity space. The properties of the receptive fields are tightly connected to their position in the visual field, and to their preferred retinal velocity. The velocity tuning properties show characteristics of properties of neurons in the motion processing pathway of the primate brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.