Abstract

Low-density parity-check (LDPC) codes can be considered serious competitors to turbo codes in terms of performance and complexity and they are based on a similar philosophy: constrained random code ensembles and iterative decoding algorithms. We consider the encoding problem for LDPC codes. More generally we consider the encoding problem for codes specified by sparse parity-check matrices. We show how to exploit the sparseness of the parity-check matrix to obtain efficient encoders. For the (3,6)-regular LDPC code, for example, the complexity of encoding is essentially quadratic in the block length. However, we show that the associated coefficient can be made quite small, so that encoding codes even of length n/spl sime/100000 is still quite practical. More importantly, we show that optimized codes actually admit linear time encoding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.