Abstract
Emulation has been successfully applied across a wide variety of scientific disciplines for efficiently analysing computationally intensive models. We develop known boundary emulation strategies which utilise the fact that, for many computer models, there exist hyperplanes in the input parameter space for which the model output can be evaluated far more efficiently, whether this be analytically or just significantly faster using a more efficient and simpler numerical solver. The information contained on these known hyperplanes, or boundaries, can be incorporated into the emulation process via analytical update, thus involving no additional computational cost. In this article, we show that such analytical updates are available for multiple boundaries of various dimensions. We subsequently demonstrate which configurations of boundaries such analytical updates are available for, in particular by presenting a set of conditions that such a set of boundaries must satisfy. We demonstrate the powerful computational advantages of the known boundary emulation techniques developed on both an illustrative low-dimensional simulated example and a scientifically relevant and high-dimensional systems biology model of hormonal crosstalk in the roots of an Arabidopsis plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.