Abstract

A strong increase of spontaneous radiative emission from colloidally synthesized CdSe/CdS/PMMA hybrid particles is achieved when manipulated into plasmonic bullseye resonators with the tip of an atomic force microscope (AFM). This type of antenna provides a broadband resonance, which may be precisely matched to the exciton ground state energy in the inorganic cores. Statistically analyzing the spectral photoluminescence (PL) of a large number of individual coupled and uncoupled CdSe/CdS/PMMA quantum dots, we find an order of magnitude of intensity enhancement due to the Purcell effect. Time-resolved PL shows a commensurate increase of the spontaneous emission rate with radiative lifetimes below 230 ps for the bright exciton transition. The combination of AFM and PL imaging allows for sub-200 nm localization of the particle position inside the plasmonic antenna. This capability unveils a different coupling behavior of dark excitonic states: even stronger PL enhancement occurs at positions with maximum spatial gradient of the nearfield, effectively adding a dipolar component to original quadrupole transitions. The broadband maximization of light-matter interaction provided by our nanoengineered compound systems enables an attractive class of future experiments in ultrafast quantum optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call