Abstract

Membrane bioreactors (MBRs) were shown contradictory results for the removal of antibiotics, such as sulfonamides (SAs), from wastewater in different studies, which highlighted the necessity for comprehensive investigation on removal mechanisms of sulfonamides in well-controlled lab-scale MBRs. In the present study, the removal performance of nine SAs by a lab-scale anaerobic/anoxic/oxic-membrane bioreactor (A1/A2/O-MBR) was studied at environmental relevant concentrations. The results showed that all the SAs were efficiently eliminated (93.9%–97.5%) in the A1/A2/O-MBR, much more efficiently than the previously reported MBR-based processes. The largest contribution to the total removal was made by the aerobic reactor (71.1%–85.3%) A small portion of SAs (7.1%–22.5%) were removed by anoxic reactor. Activated sludge in the A1/A2/O-MBR was harvested to conduct batch experiments to further study the removal and degradation kinetics of SAs under anaerobic, anoxic and aerobic conditions. The results indicated that only sulfisoxazole could be removed under anaerobic condition. Modest biodegradation of individual SAs (15–33%) was observed under anoxic condition. Under aerobic condition, most investigated SAs underwent an efficient and fast removal (68–77%) in 6h without a lag phase; while sulfisomidine and sulfamethazine were removed less efficiently (approximately 47% after 6h reaction). The aerobic and anoxic degradation of SAs fitted the first-order kinetics model well, and the obtained biodegradation rate constants (k1) were reliable to predict removal efficiencies of SAs in the anoxic and aerobic reactor of A1/A2/O-MBR based on their HRTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.