Abstract

Metal-free carbon catalysts (MFCCs) are one of the commonly used catalysts for electrocatalytic two-electron oxygen reduction (2e- ORR) synthesis of hydrogen peroxide (H2O2). Oxygen doping is an effective means to improve the performance of MFCCs, but the performance of oxygen-doped carbon catalysts is still not high enough, and the contribution of different oxygen functional groups (OFGs) to the catalytic performance is still inconclusive. In this paper, carbon-based catalysts with different oxygen contents and ratios of OFGs were prepared, and the high 2e- ORR activity of COOH + C-OH was demonstrated by combining the results of experiments and theoretical calculations. The prepared oxygen-doped carbon-based catalyst C-0.1M80 achieved an onset potential of 0.795 V (vs RHE), a selectivity of up to 98.2% (0.6 V vs RHE), and a H2O2 oxidation current of 1.33 mA cm-2 (0.5 V vs RHE) in a rotating ring-disk electrode test (0.1 M KOH solution), which was an outstanding performance in MFCCs. In a solid electrolyte flow cell, C-0.1M80 achieved a Faraday efficiency of 97.5% at 200 mA cm-2 with a corresponding H2O2 production rate of 123.7 mg cm-2 h-1. In addition, a flow cell stability test was performed at an industrial current density (100 mA cm-2) with an astounding 200 h of uninterrupted operation, also achieving an outstanding average Faradaic efficiency (95.8%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.