Abstract

AbstractPrecise design and construction of catalysts with satisfied performance for ambient electrolytic nitrogen reduction reaction (e‐NRR) is extremely challenging. By in situ integrating an electron‐rich polyoxometalates (POMs) into stable metal organic frameworks (MOFs), five POMs‐based MOFs formulated as [FexCoy(Pbpy)9(ox)6(H2O)6][P2W18O62]·3H2O (abbreviated as FexCoyMOF‐P2W18) are created and directly used as catalysts for e‐NRR. Their electrocatalytic performances are remarkably improved thanks to complementary advantages and promising possibilities of MOFs and POMs. In particular, NH3 yield rates of 47.04 µg h−1 mgcat.−1 and Faradaic efficiency of 31.56% by FeCoMOF‐P2W18 for e‐NRR are significantly enhanced by a factor of 4 and 3, respectively, compared to the [Fe0.5Co0.5(Pbpy)(ox)]2·(Pbpy)0.5. The cyclic voltammetry curves, density functional theory calculations and in situ Fourier‐transform infrared spectroscopy confirm that there is a directional electron channel from P2W18 to the MOFs unit to accelerate the transfer of electrons. And the introduction of bimetals Fe and Co in the P2W18‐based MOFs can reduce the energy of the *N2 to *N2H step, thereby increasing the production of NH3. More importantly, this POM in situ embedding strategy can be extended to create other e‐NRR catalysts with enhanced performances, which opens a new avenue for future NH3 production for breakthrough in the bottleneck of e‐NRR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.