Abstract

Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h-1 mg-1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K2 SO4 at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.