Abstract
The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.