Abstract

Solar-driven hydrogen evolution from water has emerged as an important methodology for the storage of renewable energy in chemical bonds. Efficient and practical clean-energy devices for electrochemical or photoelectrochemical splitting of water require the immobilization of stable and active hydrogen-evolving catalysts onto electrode or photocathode materials, which remains a significant challenge. Here we show that cobalt(II) reacts with benzene-1,2,4,5-tetrathiol in the presence of base to form a cobalt dithiolene polymer 1. The generated polymer is immobilized onto glassy carbon electrodes (GCE) to generate a metal-organic surface (MOS 1|GCE), which displays efficient H2-evolving activity and stability in acidic aqueous solutions. Moreover, the generated polymer is integrated with planar p-type Si to generate very efficient photocathode materials (MOS 1|Si) for solar-driven hydrogen production from water. Photocurrents up to 3.8 mA/cm(2) at 0 V vs RHE were achieved under simulated 1 Sun illumination. MOS 1|Si photocathodes operate at potentials 550 mV more positive than MOS 1|GCE cathodes to reach the same activity for H2 evolution from water (1 mA/cm(2)).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call