Abstract

Developing an efficient bifunctional catalyst for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in water splitting technology is very attractive for clean energy. Here, a new Co-Fe-B ternary catalyst with improved crystallinity is successfully synthesized by combining the chemical reduction and subsequent solid-state reaction method. Synchrotron-based X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) indicate the electronic structure redistribution is favor for the improved performance. The overpotential is only 129 mV and 280 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline condition, the corresponding Tafel slope is 67.3 mV dec−1 and 38.9 mV dec−1. Density functional theory calculations distinguish that the ternary crystalline Co-Fe-B catalysts are thermodynamically favorable for HER and OER. The actual active species of the ternary catalyst in OER is the CoOOH and FeOOH as indicated in ex situ Raman spectra. The present work may introduce promising crystallinity borides material for the anode and cathode of water splitting device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call