Abstract

This study introduces a novel Cardiac Electric Vector Simulation Model (CEVSM) to address the computational inefficiencies and low fidelity of traditional electrophysiological models in generating electrocardiograms (ECGs). Our approach leverages CEVSM to efficiently produce reliable ECG samples, facilitating data augmentation essential for the computer-aided diagnosis of myocardial infarction (MI). Significantly, experimental results show that our model dramatically reduces computation time compared to conventional models, with the self-adapting regression transformation matrix method (SRTM) providing clear advantages. SRTM not only achieves high fidelity in ECG simulations but also ensures exceptional consistency with the gold standard method, greatly enhancing MI localization accuracy by data augmentation. These advancements highlight the potential of our model to generate dependable ECG training samples, making it highly suitable for data augmentation and significantly advancing the development and validation of intelligent MI diagnostic systems. Furthermore, this study demonstrates the feasibility of applying life system simulations in the training of medical big models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.