Abstract

This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor (KNN), random forest (RF), decision tree (DT), and support vector machine (SVM) for arrhythmia detection. The proposed classifier leverages the Chi-square distance as a primary metric, providing a specialized and original approach for precise arrhythmia detection. To optimize feature selection and refine the classifier's performance, particle swarm optimization (PSO) is integrated with the Chi-square distance as a fitness function. This synergistic integration enhances the classifier’s capabilities, resulting in a substantial improvement in accuracy for arrhythmia detection. Experimental results demonstrate the efficacy of the proposed method, achieving a noteworthy accuracy rate of 98% with PSO, higher than 89% achieved without any previous optimization. The classifier outperforms machine learning (ML) and deep learning (DL) techniques, underscoring its reliability and superiority in the realm of arrhythmia classification. The promising results render it an effective method to support both academic and medical communities, offering an advanced and precise solution for arrhythmia detection in electrocardiogram (ECG) data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.