Abstract

We present a novel loop transformation technique, particularly well suited for optimizing embedded compilers, where an increase in compilation time is acceptable in exchange for significant reduction in energy consumption. Our technique transforms loops containing nested conditional blocks. Specifically, the transformation takes advantage of the fact that the Boolean value of a conditional expression, determining the true/false paths, can be statically analyzed and this information, combined with loop dependency information, can be used to break up the original loop, containing conditional expressions, into a number of smaller loops without conditional expressions. Subsequently, each of the smaller loops can be executed at the lowest voltage/frequency setting yielding overall energy reduction. Our experiments with loop kernels from mpeg4, mpeg-decoder, mpeg-encoder, mp3, qsdpcm and gimp show an impressive energy reduction of 26.56% (average) and 66% (best case) when running on a StrongARM embedded processor. The energy reduction was obtained at no additional performance penalty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.