Abstract

ABSTRACT Binary systems exert a gravitational torque on misaligned discs orbiting them, causing differential precession which may produce disc warping and tearing. While this is well understood for gas-only discs, misaligned cirumbinary discs of gas and dust have not been thoroughly investigated. We perform SPH simulations of misaligned gas and dust discs around binaries to investigate the different evolution of these two components. We choose two different disc aspect ratios: A thin case for which the gas disc always breaks, and a thick one where a smooth warp develops throughout the disc. For each case, we run simulations of five different dust species with different degrees of coupling with the gas component, varying in Stokes number from 0.002 (strongly coupled dust) to 1000 (effectively decoupled dust). We report two new phenomena: First, large dust grains in thick discs pile up at the warp location, forming narrow dust rings, due to a difference in precession between the gas and dust components. These pile ups do not form at gas pressure maxima, and hence are different from conventional dust traps. This effect is most evident for St ∼ 10–100. Secondly, thin discs tear and break only in the gas, while dust particles with St ≥ 10 form a dense dust trap due to the steep pressure gradient caused by the break in the gas. We find that dust with St ≤ 0.02 closely follow the gas particles, for both thin and thick discs, with radial drift becoming noticeable only for the largest grains in this range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call