Abstract

Dry reforming of CH4 with CO2 is an effective way to convert these two greenhouse gases into useful industrial feedstock. Here, we designed and developed Ni@Y2O3 nanofibers catalyst by pyrolyzing sheet-like Ni2(CO3) (OH)2 grown in situ on the surface of Y2O3 nanofibers. Y2O3 nanofibers support can not only promote the contact of the reaction gas with the catalyst due to its self-supporting effect, but also improve the ability to capture CO2 because of its basic oxide properties. Meanwhile, the oxygen exchange between the catalyst and CO2 could promote the oxidation of carbon deposits, and further improve activity and stability of the catalyst. Besides, the catalyst obtained by low-temperature pyrolysis could maintain the sheet-structure of nickel on the surface of support, which is conducive to improve its catalytic activity, stability, and resistance to carbon deposition. This work has a positive effect on improving the design of catalysts as well as producing industrial chemicals and reducing the environmental pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.