Abstract

In this paper we present efficient algorithms to take advantage of the double-base number system in the context of elliptic curve scalar multiplication. We propose a generalized version of Yao's exponentiation algorithm allowing the use of general double-base expansions instead of the popular double base chains. We introduce a class of constrained double base expansions and prove that the average density of non-zero terms in such expansions is O( log k/ log log k) for any large integer k. We also propose an efficient algorithm for computing constrained expansions and finally provide a comprehensive comparison to double-base chain expansions, including a large variety of curve shapes and various key sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.