Abstract

Doping of 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene(Spiro-OMeTAD), which is the most common used hole transport material in perovskite solar cells, is widely studied. Especially, bis(trifluoromethane)sulfonamide (Li-TFSI) combined with 4-tert-butylpyridine (TBP) is the most studied dopant to improve the conductivity of Spiro-OMeTAD, with conductivity around 6×10−8 S/cm. In this study, we employed a new oxidizing agent NO2 to dop the Spiro-OMeTAD simply by vapor exposure, showing efficient doping with conductivity up to 2.53×10−3 S/cm and excellent film quality. The doping mechanism was further analyzed by ultraviolet-visible-near infrared spectroscopy (UV-Vis-NIR), electron paramagnetic resonance spectroscopy (EPR), Fourier infrared absorption spectroscopy (TFIR), and X-ray photoelectron spectroscopy. Our findings highlight the potential of molecular doping with NO2 to significantly improve the conductivity of Spiro-OMeTAD, providing a deep understanding of the doping effects on Spiro-OMeTAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.