Abstract

Transition metal dichalcogenides (TMDCs) belong to a subgroup of two-dimensional (2D) materials which usually possess thickness-dependent band structures and semiconducting properties. Therefore, for TMDCs to be widely used in electronic and optoelectronic applications, two critical issues need to be addressed, which are thickness-controllable fabrication and doping modulation of TMDCs. In this work, we successfully obtained monolayer WS2 and achieved its efficient doping by chemical vapor deposition and chemical doping, respectively. The n- and p-type dopings of the monolayer WS2 were achieved by drop coating electron donor and acceptor solutions of triphenylphosphine (PPh3) and gold chloride (AuCl3), respectively, on the surface, which donates and captures electrons to/from the WS2 surface through charge transfer, respectively. Both doping effects were investigated in terms of the electrical properties of the fabricated field effect transistors. After chemical doping, the calculated mobility and density of electrons/holes are around 74.6/39.5 cm2·V−1·s−1 and 1.0 × 1012/4.2 × 1011 cm−2, respectively. Moreover, we fabricated a lateral WS2 p–n homojunction consisting of non-doped n-type and p-doped p-type regions, which showed great potential for photodetection with a response time of 1.5 s and responsivity of 5.8 A/W at VG = 0 V and VD = 1 V under 532 nm light illumination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.