Abstract
In this paper we study domain decomposition methods for solving some elliptic problem arising from flows in heterogeneous porous media. Due to the multiple scale nature of the elliptic coefficients arising from the heterogeneous formations, the construction of efficient domain decomposition methods for these problems requires a coarse solver which is adaptive to the fine scale features, [4]. We propose the use of a multiscale coarse solver based on a finite volume – finite element formulation. The resulting domain decomposition methods seem to induce a convergence rate nearly independent of the aspect ratio of the extreme permeability values within the substructures. A rigorous convergence analysis based on the Schwarz framework is carried out, and we demonstrate the efficiency and robustness of the preconditioner through numerical experiments which include problems with multiple scale coefficients, as well as problems with continuous scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.