Abstract
In recent years, Nonnegative Matrix Factorization (NMF) has received considerable interest from the data mining and information retrieval fields. NMF has been successfully applied in document clustering, image representation, and other domains. This study proposes an online NMF (ONMF) algorithm to efficiently handle very large-scale and/or streaming datasets. Unlike conventional NMF solutions which require the entire data matrix to reside in the memory, our ONMF algorithm proceeds with one data point or one chunk of data points at a time. Experiments with one-pass and multi-pass ONMF on real datasets are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.