Abstract

This research discusses a methodology to integrate strictly isothermal closed processes within thermal cycles characterized by working through contraction processes by extracting heat at free cost. An analysis of a preliminary design study of an engine and cycle doing useful work by expansion and contraction is carried out, whereby the energy balance equations are adjusted when considering contraction work as the core of the problem-solving strategy. The results of the preliminary design study will be applied to the implementation of the disruptive power unit prototype operating with real gasses as working fluids, which allows a precise and clear understanding of the issue of generating useful work through the expansion, contraction, and regeneration of heat by applying advanced heat recovery techniques to convert heat into useful work, thus achieving efficient power units that exhibit the ability to exceed 100% of added thermal energy due to the contribution of the contraction-based work performed at free cost..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.